For additional details and references on what is covered during this session, refer to the documentation
https://docs.metropolis.lucasjavaudin.com/getting_started/input/agents.html
parameters.json file:
{
"input_files": {
"agents": "agents.csv",
"alternatives": "alts.csv"
},
"output_directory": "output",
"max_iterations": 1,
"period": [0.0, 3600.0],
"saving_format": "CSV"
}
File agents.csv:
agent_id = 1,2,3
File alts.csv
agent_id = 1,2,3alt_id = 1,1,1,2,2,2
agent_results.csv
File alts.csv
constant_utility = 1,1,1,2,2,2
agent_results.csv
File agents.csv
alt_choice.type = Deterministic
agent_results.csv
File agents.csv
alt_choice.type = Logitalt_choice.u = RAND()alt_choice.mu = 1
agent_results.csv
{
"input_files": {
"agents": "agents.csv",
"alternatives": "alts.csv",
"trips": "trips.csv"
},
"output_directory": "output",
"max_iterations": 1,
"period": [0.0, 3600.0],
"saving_format": "CSV"
}
File alts.csv:
dt_choice.type = Constantdt_choice.departure_time = 50
File trips.csv:
agent_id = 1,2,3alt_id = 2,2,2trip_id = 1,1,1class.type = Virtualclass.travel_time = 100
agent_results.csv
constant_utility
travel_utility.two, travel_utility.three and travel_utility.four can be use for a polynom of up to degree 4File trips.csv:
travel_utility.one = -0.01,-0.01,-0.01
agent_results.csv
trip_results.csv
stopping_time variable can be used to add a delay between two trips (this can represent the activity duration)File trips.csv:
agent_id = 1,2,3,1,2,3alt_id = 2,2,2,2,2,2trip_id = 1,1,1,2,2,2class.type = Virtualclass.travel_time = 100,100,100,20,20,20travel_utility.one = -0.01stopping_time = 30,30,30,,,
agent_results.csv and trip_results.csv
File alts.csv:
dt_choice.type = Continuousdt_choice.model.type = Logitdt_choice.model.u = RAND()dt_choice.model.mu = 1
agent_results.csv
utility: Simulated utility, based on the selected alternative $j$ and departure time $\tau$: $V^{\text{sim}}_{j}(\tau)$
alt_expected_utility: Expected utility of the departure-time choice of the selected alternative $j$: $\mathbb{E}_{\varepsilon}[\max_{\tau} U_j(\tau)]$
expected_utility: Expected utility of the alternative choice: $\mathbb{E}_{\varepsilon}[\max_{j} U_j]$
File trips.csv:
schedule_utility.type = AlphaBetaGammaschedule_utility.tstar = 1800schedule_utility.beta = 0.005schedule_utility.gamma = 0.02
trip_results.csv